Tuesday, November 24, 2015

Water Treatment Design & Working



 Coagulation & Flocculation

1.0 Introduction
Coagulation means to destabilize the naturally occurring negative charges on the particles by adding chemicals called coagulant. The most common coagulants are Aluminum sulfate Ferric sulfate Ferric chloride When the coagulants are added to water the charges on the particles gets destabilized . Once this Charge is destabilized the particles no longer repel each other and can come together in close  proximity.

We  have already explained this in details in Coagulation & Flocculation 
Changes in water analysis when coagulants, acid and alkalis are added

TABLE__1      
          
Chemicals
Aluminum
sulfate
Ferrous
sulfate
Ferric
sulfate
Chlorine
Hydrated
Lime
Sulfuric
acid
Formula
Al2(SO4)3.18
H2O
FeSO47H2O
Fe2(SO4)3
.2H2O
 Cl
 Ca(OH)2
H2SO4
Reduction in Alkalinity as CaCO3
0.45
0.36
0.75
1.40
-
0.95
Increase in
Alkalinity as CaCO3
 1.26
Reduction in
CO2 asCO2
1.11
Increase in
CO2as CO2
0.40
0.31
0.66
1.30
0.84
Increase in
SO4 as CaCO3
0.45
0.36
0.75
0.95
Increase in
Cl as CaCO3
1.4
Increase in
Hardness as CaCO3
1.26



1.1 Adding coagulants
The amount of coagulants required to be added for effective coagulation is found out by JAR TEST.
In coagulation & Flocculation we have already mentioned the minimum coagulant dosages used For example Let alum be the coagulant.  The minimum dosage is 34ppm. 

By the use of following formulae we can find out – How much additional alum, acid or alkali must be added to obtain an Optimum pH of 6.8. The pH /alkalinity /CO2 table shows that for a pH of 6.8 the ratio of 3 Alkalinity to 1CO2 is required.

Let us assume that after adding the minimum alum dosage the pH is low. To raise the pH we add either soda ash (sodium carbonate) or hydrated lime (calcium hydroxide)

1.2 Using soda ash
Let X be the amount of soda ash required (Purity of soda ash 99.16%)
We require a ratio of 3Alkalinity to 1CO2
                                            Alkalinity + 0.94X
                            3    =      ------------------------------            (refer table1)
                                              CO2     -     0.41X

                          3CO2 -- 1.23X    =    Alkalinity + 0.94X

                                  3CO2    --    Alkalinity =   2.17 X


                                           3CO2    --    Alkalinity
                             X =     ----------------------------------
                                                     2.17     

1.3 By using hydrated lime
                        
Let   Y be the amount of lime required

                                                Alkalinity + 1.26 Y
                        3      =      -------------------------------
                                                   CO2     --    1.11Y
               
               3CO2 - 3.33Y      =    Alkalinity + 1.26Y

                3CO2 – Alkalinity =    4.59 (say 4.6)
           
                                               3CO2 – Alkalinity
                     Y =            -------------------------------  
                                                             4.6
If pH is high   after adding the minimum alum dosage we require adding more alum to get the optimum pH. This can be found out as shown Let’s say that additional alum required is   Z ppm.

This will lower the pH.

As mentioned earlier we require a ratio of 3 Alkalinity to 1 CO2.
              
       Therefore                              Alkalinity -   0.45Z          
                                     3    =      ---------------------------
                                                     CO     +    040 Z

            3CO+1.20 Z        =      Alkalinity - 0.45Z

             Alkalinity - 3 CO2   =     1.65Z

                                                             Alkalinity – 3CO
Or                         Z          =         -------------------------------
                                                                      1.65
At times in larger plants adding additional alum to lower pH becomes highly uneconomical. Therefore to bring the pH to optimum level sulfuric acid is used.
Let’s say Acid required is R ppm. Again to keep the ratio of 3 Alkalinity to 1 CO2

                                            Alkalinity – 0.95 R
                               3 =     --------------------------------
                                            CO2 +   084 R

                          3 CO2 + 2.52 R = Alkalinity - 0.95R

                             Alkalinity – 3 CO= 3.47 R

                                             Alkalinity – 3CO2
                             R =   ------------------------------------
                                                         3.47
                                                       
The formulas above are when alum is used for Turbidity reduction.

Example
Coagulation for turbidity reduction. Let the alkalinity & CO2 of raw water be 45 & 5 ppm respectively. 

34 ppm of alum is added. this is the minimum dosage.

There will be change in Alkalinity and  CO because of alum  addition Alkalinity will decrease and  there will be increase in CO2

Reduction in alkalinity       =        34* 0.45    =   15ppm (When alum is added)
Change in alkalinity           =         45 – 15    =     30 ppm
Increase in CO2                  =        34 * 0.40   =   13 ppm
Change in CO2 of raw water  =        5 + 13 =      18  ppm
We require  a pH  of 6.8. This requires a ratio of 3 . Ratio alkalinity to CO2 = 30/18 = 1.67
This results in a pH  of 6.5
                                                                  3CO2   -   Alkalinity
By using equation for soda ash  X=   ---------------------------------------
                                                                          2.17
                                                 3*18 - 30                           54   -30
                                     X=   ---------------------- =         --------------------   
                                                     2.17                                 2.17                                                                                                                                                                                                                                                             
                                        =          24/2.17  = 11.04
Alkalinity after adding soda ash  =  11 *0.94 = 10.4 ( say 11 )
CO2 after adding soda ash           =  11* 0.41 =4.5     (say  4 )
 Alkalinity =  30 +11 = 41 ppm
 CO2          =   18- 4 = 14 ppm 
                                                       Ratio  =    41/ 14  = 3 
                                              This results in  a  pH of  6.8

Color Removal

Now  let’s  calculate alum required for Color Removal

For color removal the pH required is 5.6 Let alkalinity of raw water be 30ppm andCO2 be 3ppm Adding 43 ppm of alum

Alkalinity  =    30  -   ( 43*0.45)  =  30  -   19  =  11

CO2        =    3  +   (  43 *0.40) =  3   +   17  =  20

Alkalinity / CO2   =   11/20       =    0.55

Results in pH of 6.05. This  pH  has to be depressed to 5.6

So more alum is required

Let’s say X is additional alum required

By  using the formula we can calculate  additional required

                   Alkalinity  -  0.2 CO2             11  -  0.2 ( 20)
  X =      -------------------------------  =       --------------
                             0.53                                  0.53        
       
  X  =       11  - 4 / 0.53 =  7/ 0.53 = 13.2 ppm ( say 13 ppm)
This additional alum will further reduce Alkalinity in water and increase CO2
Reduction in Alkalinity  = 11  -  (0.45 * 13) = 11 -   6 = 5 ppm
Increase   in    CO2        = 20  + (0.40 * 13 ) = 20 + 5 = 2
Ratio Alkalinity/ CO2  = 5 / 25 = 0.2 . Results in pH of 5.6
Total alum required is =  43ppm(minimum dosage) + 13ppm (additional dosage)
We have suggested  a minimum dosage of  various coagulants  but we repeat that best method to arrive at optimum coagulant dosage is by conducting a JAR TEST.
In the example for color removal we gave the formula for pH > 5.6
If pH is less than an alkali must be added . for color removal  caustic soda is used for increasing pH .
Let’s say C is the required amount of caustic

                                         0.2 CO2  -  Alkalinity
                           C   =       ---------------------------
                                                         1.45
Note :- these calculations are available in Excel  also. There you have to just feed the user Entry data’s and calculation will be done automatically.


Designing a chlorination  system

2.0 Introduction

Chlorine is one substance which finds wide utilization in water treatment. It is Because chlorine is a powerful oxidizing  agent. Chlorine is used for Disinfecting water, for ammonia removal , color reduction, for microorganism control, taste & odor control, in iron & Manganese removal ,H2S  Removal  & destruction of organic matter Chlorine is a hazardous chemical and should be handled carefully. As mentioned above  Chlorine is for variety of application and chlorine dosage for each may be different. Chlorine is available in all three forms       solid , liquid & gas.

We limit our discussion to Chlorinating by hypochlorites. The two hypochlorite’s used are Calcium hypochlorite and Sodium hypochlorite . Free chlorine combines with water to form hypochlorus and hydrochloric acid 
 Chlorine + water-       Ã         Hypochlorus acid    +   hydrochloric acid
 Cl2        +    H2O            Ã       HOCl      + H+  +  Cl
      HOCL                   Ã      H+   +    OCl--  

 Distribution  Of HOCl   And OCl  at different pH  and temperature

     PH                          HOCl                                            OCl-
         4            100                   100                     0                         0
         5            99.9                   99.9                   0.1                    0.3
         6             98.5                  97.4                   1.5                    2.6
         7            86.9                   79.2                 13.1                   20.8
        7.5          67.9                   54.7                 32.1                   67.9
        8             40.1                   27.6                 59.9                   72.4
        8.5          17.4                   10.8                 82.6                   89.2
        9              6.3                      3.7                 93.7                   96.3
        10            0.7                      0.3                 99.3                   99.6
        11            0.07                    0.03              100.0                 100.0



Before we discuss further let us understand few  terminology   associated with
chlorination.

2.1 Chlorine demand
Chlorine when added to water containing organic and inorganic materials, will combine with these impurities to form chlorine compounds. At some  point  reaction with organic and inorganic material will stop, This  point is known as chlorine demand. In other words the DEMAND is the amount of chlorine consumed by oxidation and substitution  reaction with organic and inorganic  materials.

Chlorine which is left after the chlorine demand has been met is free residual chlorine. This free Residual chlorine is the available residual chlorine to kill the microorganism present in water.
Chlorine dose mg/liter = Chlorine demand mg/liter +  Chlorine residual mg//liter
Reaction with water
Chlorine reacts with water to form hypochlorous and hydrochloric acid
Cl2  +H2O       ®              HOCl  +  HCl
Hypochlorous acid being a weak acid further dissociates ,depending on the pH to
Hydrogen ions and hypochlorite ions
HOCl         ®                  H+    +  OCl-
A chlorine solution  therefore may contain elemental chlorine, hypochlorous acid or hypochlorite ions depending upon the pH
At pH<3  all chlorine remains has elemental Cl2                         
At pH>3<5   all chlorine remains has hypochlorous acid
At pH >5<10  all chlorine is in form of HOCl and OCl-
At pH >10 all chlorine is form of OCl--
As it can be seen from above pH  is of vital importance in chlorination In dilute chlorine solution with  a  pH of above 4 , the formation of hypochlorous acid is most complete and leaves little free chlorine. Hypochlorous acid being a weak acid dissociates poorly below a pH of 6. Thus any Cl2 or OCl ions added to water will immediately form hypochlorous acid or hypochlorite ions depending on the pH. Hypochlorous acid is a stronger disinfectant than OCl- ions. Therefore it is water should be chlorinated at  a pH 5—7

2.2 Reaction with other impurities
Reaction with H2S and  NH3  
Hydrogen sulfide and ammonia are two inorganic substance which may be present at the stage of disinfection. Their presence can complicate the use of chlorine for disinfection purposes. H2S and NH3 are reducing agents and give up their electron easily. Chlorine  reacts with these compound rapidly
Producing some undesirable results
H2S  +Cl2        Ã            S       +   H2O   +     2Cl-
The chlorine required to oxidize  H2S to sulfur  and water is 2.08 mg/liter of Cl2 for 1 mg/liter of H2S. 

The complete oxidation of H2S to sulphate is has shown below H2S + 4 Cl2  + 4 H2O -------à      H2 SO  +   8HCl

Thus 8.32 mg/liter of chlorine is required for complete oxidation of H2S.
When  chlorine is added to water containing ammonia it reacts rapidly to form chloroamines. This means less chlorine is available for disinfecting purpose. As the ammonia concentration increases  the disinfecting power of chlorine falls of rapidly.

2.3 Reaction with organic materials
Chlorine will react with any organic material present  to form  suspected carcinogenic product, for Example trihalomethanes. This can be best avoided by limiting the prechlorination and removing organic materials by other means prior to chlorination.

2.4 Breakpoint Chlorination
As explained earlier chlorine reacts with various impurities in water  .If you see the graph below In the first stage chlorine is destroyed by reducing agents. Then it reacts with organic matters present in water. After reaction with organics it reacts with ammonia present to produce chloroamines.  The type of chloroamines formed depends on molar ratio of chlorine added to ammonia nitrogen present and on the pH. At this stage we get what is known as combined residual –a chlorine residual combined with other substances and has less disinfecting strength. Further addition of chlorine will destroy the chloroamines and some chloroorganics, Any further  addition of chlorine will give us –what is known as free available residual chlorine. Free in the sense that it has not reacted with anything and is available for disinfection. Free residual chlorine is the best residual for disinfection.

Refer to the graph and you will see that when reaction with ammonia is complete there is a dip in the curve. The point where there is a dip is known as the break point.  Chlorination is always done beyond breakpoint to ensure that there is free residual chlorine available.

2.5 Process Calculation
There is basically two chlorination process calculation
calculating chlorine dose mg/Liter
Estimating chlorine demand
Chlorine dose mg/liter =  chlorine demand + chlorine residual
Chlorine mg/liter* M3/day flow
Chlorine feed per day =        ---------------------------------------------
                                                                1000
Let us work out an example
Chlorine dose =           2.5mg/liter
Flow                =          4000M3/day
1 day                  =     24 hours

                                                                        Chlorine mg/liter* flowM3/day
 Chlorine feed per day in kgs   =   -----------------------------------------------------------
1000
                                                                             2.5*4000                                                        
     =                                                                  ----------------  =     10 Kgs/day
                                                                               1000                              
Now calculate the Dry calcium hypochlorite required for the above example
Chlorine required             =          10 kgs/ day
Available chlorine            =         65%
Of Calcium hypochlorite
                                                                  Kg/day Chlorine                        10 kgs/day
Dry calcium hypochlorite required =   ---------------------------         =     ---------------        
                                                                 %available chlorine/100              0.65
=       15.38kgs
Similarly for sodium hypochlorite which has available chlorine of 30%


  Kgs of Cl2                                  10kgs / day
Dry sodium hypochlorite   = -------------------------------     =   --------------------
 % available chlorine/100              0 .30
=            33.33 kgs /day

Calculating  the water required  to make 5 %  solution
Amount of water required to dilute to  5 % solution
Chlorine Kgs                         
Water required(liters)             =      --------------------     -    Chlorine Kgs       
                                                            % strength
                                            
15.38
                                                =                           -     15.38                  
5/100
 =          292.2 liters   ( Note sp. Gravity of water is 1 )





Designing a  Pressure filter


3.0 Filtration

Filtration is a process that consists of passing a solid liquid  mixture through a porous material which retains the solid and  allows the clear liquid to pass through . The porous media can  be any filtering media like sand, coal etc. The clear liquid is called the filtrate

3.1 Types of filters
Filters are classified in two ways
1.      By mode of  operation
2.      By  basis of media used

3.2 Classification by operation
1.      Gravity  Filters
2.      Pressure Filters
Filters are classified based on the function of system, if the filter operates under the systems gravity head, it is called GRAVITY Filter.  Similarly if a filter functions  under  the  pressure of incoming water, it is called PRESSURE FILTER.

3.3 Classification by Media
Filters are also many times classified by the type of media
used . Sand, anthracite, garnet and some other material used  for  filtration. The filters classified on the basis of media are

        TYPE OF FILTER                                                              MEDIA
          Sand filter                                                                            Sand
          Dual media filter                                                                 Sand &  Anthracite
          Multimedia filter                                                                Sand ,Anthracite & Garnet
         Activated carbon Filter                                                       Activated carbon
         Manganese zeolite Filter                                                     Greensand (MnO2)

3.4 Filtration Rates
It  is a common practice to state  the working rate of filters in terms of  flow  through a unit surface Area in a given time (Meter/hour) .
The  Filtration  rate is taken as follows                 
1.           Pressure sand filters                      10-----12  Meter/Hour
2.           Dual media filter                            12-----15  Meter/Hour
3.           Multimedia filter                            15-----20  Meter/Hour

3.5  Parameters required for designing  a pressure filter.
The following parameters are required for designing a filter.
Total output  in meter cube/day (M3/day) or Flow in M3/Hr
Velocity in Meter/Hour (M/Hr)
Backwash velocity in M/Hr
Blower air velocity in M/Hr
Backwash tank capacity in M 3    or Backwash pump capacity in M3/Hr


Parameters                   PSF                      DMF                       MMF
    Velocity M/Hr                10—12                     15---18                         18---20

    BW Velocity M/Hr             36                              30                                 24
   (Without air scour)
    BW Velocity M/hr              24                             24                                 20
    (With air scour )
   Blower velocity  M/Hr        36                              36                                24                
   Rinse Velocity   M/Hr
           
BW = Backwash

3.6 Calculating filter Diameter
Step1 :-            Select flow as output in Meter cube /day or In meter cube/hour
Step2 :-            Select  type  of filter you wish  to supply. Remember this will depend on the    turbidity  or suspended solids in the raw water to be treated
Step3:-             Select Velocity. Cleaner the water , higher the velocity.
Step4:-              Calculate Filter Diameter
For example  let us consider  a filter  for a flow of  600 M 3 /Day 
Then flow/hour is equal to   output/24  (600/24)
In this case it is  25 M 3 /Hr
We know   Flow   =    Area    X     Velocity

Flow
Area   =            ----------------------
Velocity
Area  =  Ã• D  / 4     ( D is diameter of  filter and Ã• is equal to 3.14)
Area   =      0 .785 D 2      (3.14 divided by 4 is equal to .785 )
Therefore       0 .785 D 2    =   Flow / Velocity
2          =       Flow /   .785 Velocity
D        =   Ã–    Flow /   .785 Velo
Let us consider a pressure sand filter


Then D =     Ã–      25 / (  .785* 10)
                                                                             
D =     1.78  Meter ( say 1.8 Meter)
Keeping the same flow of 25 m 3 /Hr , The diameter for  Dual media filter and
Multimedia filter     with a velocity of 15 M/Hr & 20 M/Hr  will be  1.4 meter &
1.2 Meter respectively



Activated Carbon filter


4.0 Introduction

Activated carbon is used in water and waste water treatment  for removal of organics,   dechlorination and also for removal of taste and odour . Activated carbon can be used in either in granulated or powdered form. Powdered activated carbon is introduced as a Chemical. Granulated activated carbon is generally used as a filter media similar to Pressure filter. Activated carbon filter or ACF as it is generally called is a Pressure vessel  Similar in construction to pressure sand filter containing the carbon media. Many raw is chlorinated and such water has to be dechlorinated before it can be passed through exchange  or through a membrane. The most widely used method of dechlorination  is by activated carbon filter.

4.1 Design of Activated Carbon Filter
The  designing of activated carbon filter is  similar to designing a Pressure sand filter.
In designing  activated carbon filter the following  parameters are important
1.   Volumetric  flow rate     M3 / Hr
2.   Velocity                            M  / Hr
3.   Bed Volume                     M3
4.   EBCT                               Minutes (5---30)
EBCT means empty bed contact time.
It is far simpler to design ACF for industrial water treatment  than for Industrial waste water treatment. In water treatment ACF is generally used for dechlorination and  the diameter of vessel can be calculated by velocity . Velocity  is normally between10-20M3/Hr.
We know
Area  = Flow / Velocity
EBCT  =  Bed Volume (V) / Volumetric Flow( M3 / Hr)
Total bed volume = Volume of media + void volume
Vb            =   Area Of Vessel  M 2 *  Height (media +freeboard) M
Therefore EBCT =           A*H / Q
Where A= Area in Sq. mts,      H= Height in meters 
and  Q= Volumetric flow rate (M3 /Hr)
Now we can calculate area either by the use of EBCT or by just using velocity

4.2 By Velocity
We Know        Velocity * Area =  Flow
So                    Area =             Flow / Velocity
Area = Ã•*D2 /4   where D = Diameter
                        Area = 3.14/4*D2 = 0 .785 D2     ------ Eq ( 1 )
Velocity of ACF   is normally between  10---20 M/Hr
We select a velocity of 15 M/Hr and flow of 10 M3 /Hr
Area = Flow / velocity
0 .785 D2   = 10 /15
D2                10/15*0.785
D      = 0 0.921 (say 1 M or 1000 mm )
This is the diameter of the vessel. The height of Media is also 1 M & freeboard is 0.5 Meter
Volume of Media =   Area of vessel * height
In waste water treatment and also for organic removal EBCT method is used for finding the area of vessel and then the diameter.

                      Velocity            10                            15                           20
                         Flow               10                           10                           10
                         Height            01.5                        01.5                        01.5
                         Area               01.0                         0.66                       00.5
                          EBCT            09.0                        05.94                      04.5

               Velocity             10                             15                           20
               Flow                10                             10                              10
               Height            1.75                           1.75                           1.75
                Area              1                                0.66                           0.5
                        
               EBCT             10.5                           6.93                           5.25                 
                                     
                          Velocity             10                             15                                 20
                           Flow                  10                           10                                  10
                           Height               2.0                          2.0                                  2.0
                           Area                  1                              0.66                               0.5
                        
                           EBCT                12                           7.92                               6.0    
                         
There are many charts which  gives the required contact time required for removal of particular  contaminants by activated carbon . Once the contact time [d1]is known , the best Area can be selected based on the velocity from the above table.
ACF designing is not as simple as it looks especially in case of waste water treatment. As our aim is to keep this design manual as simple as possible we are not going into details. Designing by BDST& EBCT method. Anybody interested in
Designing by BDST& EBCT method can consult the book “ Theory & practice of water and wastewater treatment” by Ronald L.Droste   (page 505-506)


Iron Removal Filter


5.0 Introduction
We have already discussed the various methods  available for removing iron from water. The most effective means of removing iron and manganese from water is by Manganese zeolite .

5.1 Design criteria for Manganese zeolite
                          
Characteristics  of manganese greensand
   Color                                                         Black
  Density                                                        1360Kg/M3
  Effective size                                               0.30- 0.35 mm
 Uniformity coefficient                                 1.6
 Mesh size                                                     16—60
 Attrition loss per annum %                        2—4  %
 Raw water pH
 Bed Depth (minimum)                               700mm
 Freeboard                                                  50% of bed depth
 Service flow rate                                        5 –12   M3/hr/M2
 Backwash flow rate                                   20—25 M3/hr/M2  
KMnO4 is used either in conjunction with chlorine or alone. KMnO4 dosage differs depending on whether it is used alone or with chlorine.

5.2 Dosage of KMnO4.
With chlorine
1 mg/liter ofCl2 / 1ppm of Fe
KMnO4 mg/liter =( 0.2mg/literKMnO4 for 1ppm of Fe)+ (2 mg/liter of
KMnO4 for 1ppm Of Mn ) + ( 5mg/liter of KMnO4
for1ppm of H2S )
Without Chlorine
KMnO4 mg/liter = (1.mg/literKMnO4 for 1ppm of Fe)+ (2 mg/liter of KMnO4
for 1ppm Of Mn )+ ( 5mg/liter of KMnO4 for 1ppm ofH2S)

5.3  Continuous  KMnO4 injection
Step 1

Decide your flow rate . Let us consider 5 M3 / Hr  and the  concentration of Fe &  Mn is 1 PPM

Step2        
Calculate the KMnO4 consumption1 mg KMnO4 for 1mg of Fe + 2 mg of KMnO for 1 mg of Mn = 3 mg KMnO4

Step3:-           

Select filter velocity from here


KMnO4 Consumption
    Velocity
Mg/liter                                                         
  M3/Hr/M2
0.5
12
1
10
2
08
3
06
4
   05.5
5
05

Step 4          
Selected filter velocity –6 M/Hr

Step 5       

Calculate filter diameter
We know  Area                        = Flow/ Velocity
We also know that area            =  Ã•D2/4     p=3.14
Therefore                                     Ã•/4 = 3.14 /4 =0.785 :pD2/4   =0.785 D2    
                                                         =  flow/velocity
D                                                =   SQ RT ( flow /0.785*velocity)
We know flow                           = 5 M3 / hr    ,  Velocity   6 M/ hr
Therefore   D                            =     SQ RT ( 5/0.785*6 )
                                                 =     SQRT (1.06)
                                                 =      round filter diameter
Step 6         

Calculate new filter surface velocity & surface area                    
Surface Area    =       0.785 D2                                                              
Velocity            =        5/ new surface area
                         =        5 / 0.785
                         =        6.36 M/Hr
Step7      
Calculate   Volume of filter Media
Bed depth is the height of media in the vessel. Bed depth                                           
Area * bed depth  =   media volume
0.785 * 0.7         =   0.5495   M3
Weight of media = Volume * density

Step8           

Calculate operating time till backwash
Length of filtered water column =  capacity / KMnO4 Consumption                                    
=  400gm/M3 / 3gm/M3(Fe +  Mn )
=   133.3 M
Time until backwash                 =  133.3/6.36
=       21 Hours

5.4 Discontinuous  KMnO4 injection(intermittent regeneration)

Step 1    

Decide your flow rate . Let us consider 5 M3 / Hr  and the concentration of Fe is 0.5ppm  Mn is 1.25 PPM

Step2

Calculate the KMnO4 consumption
0.5 mg KMnO4 for mg of Fe + 2 .5mg of KMnO for 1.25 mg of Mn
= 3 mg /lKMnO4

Step3   

Select filter velocity from here

KMnO4 Consumption
Velocity
Mg/liter
M3/Hr/M2
0.5
12
2.0
10
3.0
08
4.0
07.5
5.0
7
10.0
6

Step4             

Selected filter velocity –8 M/Hr

Step 5

Calculate filter diameter
We know         Area =      Flow/ Velocity
We also know that   area  =         pD2/4
p  =           3.14
Therefore            p/4   =          3.14 /4 =0.785
pD2/4   =         0.785 D2     =    flow/velocity
D        =            SQ RT ( flow /0.785*velocity)

We know flow = 5 M3 / hr ,Velocity   6 M/ hr
Therefore  D     = SQ RT ( 5/0.785*8 )
=      SQRT (0.792)
=      0.892m= 0.9 round filter diameter

Step 6        

Calculate new filter surface velocity & surface area
Surface Area    =       0.785 D2
=       0.785* (.9)* (.9)
=       0.63585                                      
Velocity           =  5 / new surface area
=      5 / 0..63585
=      6.36 M/Hr

Step 7  
       
Calculate  Volume of filter Media
Bed depth is the height of media in the vessel. Bed depth
Area * bed depth   =   media volume
0.0.63585 * 0.7     =    0.445095 M3
Weight of media    =   Volume * density

Step 8 
            
In the last design we calculated the operating hours till backwash.
Here we calculate the capacity / regeneration
445 liter media * 1.4 gm /liter   /  3.0 gm/liter  = 207(M3/Regn.)
Hours of operation  =  207 /5 =   41.4 hours.

Softener designing


Step     1      
Convert ions to CaCO3 equivalent.

Step     2         
Calculate total Cations and Total Anions
TC = TA

Total Cations as CaCO3                             Total Anions as CaCO3                   

                         

            Ca        Hardness                     T Alkalinity
Mg                                           Cl

Na                                           SO4
    --------------                           ---------------------------
  Total Cation                                     Total anion

Step     3         
Calculate Na/TC

Step     4:                                                       
Decide on a Hardness leakage in the effluent and select the regeneration level  Table 1.
Step     5
Most designers select a space velocity of 16.6 M3/hr/M3 and a linear velocity of 20 M3/hr/M2.  From this select the exchange capacity at the regeneration level selected Table 2.

Step     6
Bed depth can be 0.75 to 2M but for all practical purpose the bed depth is kept between 1 – 1.5 meter.  Minimum bed depth is kept for the retention time.  Restriction of higher bed depth is due to the following reasons – increase in Dp due to increase in depth increase in height of vessel taking void space into consideration.

Step     7         
Calculation of Theoretical Bed Depth.
Sp.Velocity X Resin Volume                 Resin Volume
-----------------------------------      =             -----------------
Linear Velocity M3/hr/M2                            Bed depth.
                             Linear Velocity
Bed depth  =       ---------------------
                             Space velocity.
Linear velocity of 20M/hr/M2 and space velocity of 16.6 gives a bed depth of 1.2M.


Step     8         
Calculate the Resin Quantity (in liters) as follows

                                                Load X OBR
Resin Quantity  =  --------------------------------------------------------
                                  Ex. Change capacity X Correction factors
Correction factor can be selected Table 3, A , B
OBR  =  Output between regeneration in M3
Load  =  Ionic Load.  (Hardness in case of Softener)
OBR  =  Flow X Time.

Step     9         
Resin Quantity and the bed depth gives the are of vessel.
                    Resin Volume in M3
Area  =  -------------------------
                   Bed depth in meters.
Step   10
Check linear velocity.  The value should be in the range of 10 – 25 M3/hr/M2.  A slightly lower value can be tolerated if the water is clear and slightly more if slight increase in the hardness leakage in the effluent can be  tolerated.

Step   11         
Find the diameter of vessel
Step   12         
Now we know the diameter of vessel and Resin Quantity.  Calculate Regenerant Quantity.
Regenerant Quantity = Resin Qty(liters) X R/L in gm Nacl /liter.
Step   13         
Calculate the Regenerant flow Regenerant time.  Regenerant flow should be carried out at a velocity of 3 M3/hr/M3 of resin and the time should not be less than 15mts.  It should also not be more than 45 Mts.

Step   14         
Find the  rinse volume required.  2.5 – 3 M3/M3 of resin.  It is also dependent on plant design and end  of hardness desired in the rinse.  Normal tine for rinsing is between 30 – 50.

Step   15
Select unit up flow or Down flow.  Up flow unit is also called packed bed column.  In this unit row water passes from the bottom and treated water is collected from the top.  The down flow unit is in which the raw water passes from the top and treated water collected from the bottom.  Merits and demerits of both has been described elsewhere.

WORKED OUT EXAMPLE

Step     1         

A Water analysis shows the following report
Hardness as CaCO3    =          500PPM
TDS                             =          1000
Na                               =          1000 – 500  =  500
Therefore   Na / TC     =          50%

Step     2            

R/L from resin  catalogue for hardness leakage less than 1ppm is 160 gm/liter.
Step     3
Ex. Capacity at 16.6 M3/hr/M3 and R/L of 160 gm/liter is 70.  (See table 2).
Step     4
Correction factor for exchange capacity for NA/TC and hardness.
Actual Ex. Capacity  =  Ex. capacity X 0.85 X 0.94
=  70 X 0.85 X 0.94 = 55.93  =  56.
(See  Table 3 and 34)

Step     5         

Treated water required per day is 240 M3 (Per day = 24hrs)

                                    Load X OBR
Resin Quantity  =  -----------------------
                                    Ex. Capacity
        500 X 240                            
=  ------------------   =    2142 liters = 2142/1000 =  2.142 cubic Meters       
 56                               

                                    240
Flow M3/hr        =     --------    =     10 M3/hr
                                     24
Step     6         

Calculate the area of vessel

             Volume of Resin in M3         2.142
Area  =  ----------------------------   =  ---------
                        Bed Depth                    1.2
                        Area  =  1.785
                                  Flow     
Linear velocity  =  ---------  = 5.6 M3/hr/M(it is very less from assumed range)
                                   Area
5.6 X 2 gives 11.2 M3/hr/M2 thus  two region per day gives the required velocity.
It is better to have 2 regeneration per day if flow of 10 M3/hr is required.  Then OBR
for each regeneration becomes 120 M3.

                                    Load X OBR              500 X 120
Resin Qty (liters) = ---------------------       -------------------
                                    Ex. Capacity                     56

=  1071.42 liters = 1.071
                        1.071
Area         =   --------   =  .89
                         1.2
                                10
Linear Velocity  =  ------   =  11.23 M3/hr/M2
                               0 .89
Step     7         
Calculate the vessel diameter

r2    =   0.89
                                               
            0.89
r2    =  -------
            3.14

            0.89
r    =  -------
           3.14
                                 0.89
2r  =  d  =  2    X    ------     =  1064 mm
                                 3.14
Select 1000 mm diameter vessel.

Step     8
Calculate the actual bed depth for 1000mm Dia vessel.

Area  =   r2  =  3.14 X 0.5 X 0.5  =  .785

                        Volume           1.071
Bed depth  =  ------------   =   --------  =  1.36
                         Area               .785

This is within the limit of 1.0M to 1.5 M.
Step     9         
Calculate Regenerant flow time and flow .
At 3M3/hr/M3 the Regenerant flow in M3/hr is resin Quantity  X Velocity.
Flow in M3/hr = 3 X 1.071  =  3.21 M3/hr
                 Volume in M3                1.071
Time   =   -------------------   =   --------
                  Flow in M3/hr            3.21

= 0 .33 hrs.  =  20Mts
i.e. time for injection of salt solution should not be less than 20Mts.

Step     10       

Calculate Rinse timing :- Fast rinse in normally recommended between 12 – 16 M3/hr/M3 velocity.  Let us be conservative and use 12 M3/hr/M3 for calculation purpose which is normally taken by all designers.
Fast Rinse flow    =   12 X Resin Qty  =  12  X  1.071  =  12.85 M3/hr
                                                 Volume of water per M3 of Resin
Fast Rinse period (minutes)  = --------------------------------------------
                                                                        Flow
Rinse volume is considered to be 5M3/M3 of resin. (5 bed volumes)
In this case  =  5 X 1.071  =  5.355.   
                                    5.355
Final Rinse period  =  -------     =   0.41 hours
                                    12.85  
=  0.41  X 60  =  25,00 Minutes.

Selection of Option
Refer to the detail worked out example.  In working out the example, we have taken the following into consideration.

Hardness         :-          500ppm as CaCO3
Na/TC                         :-          < 50%
Flow                :-          10M3/hr
Linear velocity            :-          10 – 25 M3/hr/M2
Space Velocity            :-            5 -  50 M3/hr/M3
Bed depth                   :-            1 – 1.5 Meters
Output between regeneration  :-  240M3
By calculation, we found that for 240M3 output of treated water the amount of resin required is 2.142M3.
With this volume of resin i.e. 2.142 M3 and bed depth of 1.2 Meters we got area of vessel to be 1.785M2.
Now we know flow is 10M3/hr.
                                          10
Then Linear velocity  =  -------  =  5.6M3/hr/M3.
                                        1.785
The linear velocity thus calculated is too 1ow (Refer Point 4)  and hence has to be increased,
By reducing area or
By increasing head of the pump.

Option  1 By Reducing Area
Instead of having a single regeneration per day we can have two regeneration per day.  OBR now for 12 hours is 120M3.  Total output is 2 X 120  = 240M3 per day. (24 hours)   Now we calculate the resin quantity for 120 M3  which is 1.071 M3.  Keeping the same bed depth we get an area of .785 M2 which fits into all our assumptions.

Options  2
By  Increasing Head of Pump
Increase head of pump so that 20M3/hr of raw water is passed through the ion exchange vessel.  The draw off is only 10M3/hr.  Hence storage is required for additional water being pumped.  The operation is to be regulated depending upon the requirement.
     
DE alkalization


Dealkalizer  means removal of alkalinity . It is also referred to as partial demineralization since in most of the process  TDS  is reduced by the amount of alkalinity removed.
There are basically four methods by which alkalinity can be removed using ion exchange resin

7.1 By  using  Weak acid cation (WAC RESIN).   
Generally used when  total alkalinity is greater than total hardness.. When
Total Alkalinity  >   Total Hardness  all hardness is temporary hardness.
We all know that  Weak acid cation removes Hardness associated with alkalinity
but does not remove  permanent Hardness .
Basic arrangement for this process is
WAC resin in H+ Form , Degasser  and Softener

7.2  Split stream process .
This system is usually used for water of variable composition . The system  consists of
Hydrogen cation unit
Softener
Degasser
In the Hydrogen Cation unit  Cations associated with alkalinity is converted to carbonic acid and the CO2 is blown out in the dgassifier . Cl  & SO present will also get converted to their corresponding acids . This acidity  is neutralized by blending with softener water.

7.3 Starvation process .
This system is similar to above  but used with water of fixed composition.

7.4 Chloride anion  exchange process
In some places it is difficult to handle acids , for example hotels, hospitals etc . All
these places uses water in considerable amount  for utility purposes. In such places when water has high bicarbonate alkalinity then this process is used. Bicarbonate ions are replaced by chloride ions and there is no reduction of TDS  in this process .
Except for starvation process we have given examples for designing  of the
system for all the three  process.
Designing of  Split stream system.

Let us consider a water analysis as shown below .
         
   
Cations as CaCO3                                                        Anions as CaCO3

Ca 2+  --       150                                       HCO3 -     ---- 130

Mg 2+           130                                            Cl -      ----  180

Na  +            100                                           SO4 2-       --- 70

Total Cation      380                               Total Anion              380
Now let us consider the quantity of water required . Say it is  200  M3 / day. This water is required over a period of twenty hours. Then the service cycle is  200 / 20 = 10 M3/ Hr.  Regeneration per day is 1.
Quality of water required  is   alkalinity to be reduced to 25 ppm
%age of water  to be treated in hydrogen cation unit
= ( Raw  water  Alkalinity  -    Alkalinity desired) / (TDS   -  Cation leakage )

In this case

                     (130 – 25)
=            ----------------------    X   100
                      (380 -  5)

=            28  %
Now we know that flow rate is 10 M3/Hr through the Dealkalizer system
And 28 % of this has to flow through Hydrogen cation unit  and rest through
the softener .
28 %  of  10 M3/ Hr             =   10* .28  = 2.8 M3/ Hr flow from H+ Unit
72 % of 10 M3/ Hr             =   10* ..72 = 7.2 M3/ Hr flow from softener
And  the total  10 M3/ Hr has to flow from the dgassifier unit .
Cation H + Resin required
       ( total cation X Flow M3/Hr X time in Hours
=   ----------------------------------------------------------
        (Exchange capacity X  deaeration factor 0.9)
Cation Na + Resin required(softener)                               
      ( total Hardness X Flow M3/Hr X time in Hours
=   ----------------------------------------------------------
      (Exchange capacity X  deaeration factor 0.9)
                                                          ( 375)*(2.8)*20
Cation H + Resin required     =        -------------------------         =         416 liters
                                                               (56)*(0.9)

Cation Na + Resin required          (280)*( 7.2) * 20
(softener)                      =         --------------------------    =        720  liters
                                                          (62) * (0.9)
Degasser   Area                         =          flow (M3 /Hr ) /  Velocity

=        10/ 50       = 0.2
Therefore Degasser diameter   =      0.2/.785
( Because Pd2/4 =area  and P/4= 3.14/4=.785 and therefore d2 = Area/.785 )
d2 = Area/.785  =0.2/.785 = 0.255
d =   sq. rt (0.255)  = 0.504 meters *1000=  504mm (say 500mm_)

Diameter of Cation vessel
Bed depth  normally recommended by Resin manufacturers is between 700mm to
1800mm and normally 1000mm bed depth is the most commonly used. Linear
velocity is ( 10 -40) M3/Hr/M2 and  space velocity is  between 10 -  45 M3/Hr/M .
linear Velocity = flow/area         &          space velocity  =       Flow/ Volume
In this case  Resin Quantity Cation H+ Resin = 416 liters & Softener Resin
= 720 liters
Cation H+ Resin   =  416/1000   & Softener Resin = 720 /1000
Cation H+ Resin   =  0.416M & Softener Resin = 0.720M3
Bed depth =1000mm= 1 meter  ,
therefore  vessel cross sectional area = Volume/Height(bed depth)
Area = Pd2/4 and P/4= 3.14/4=.785 and
Therefore   d2 = Area/.785
Cation Vessel diameter =     Ã– (volume/height)/.785 = Ã– 0.416/.785= 0.727metres = say 800mm
Softener Vessel diameter =   Ã– (volume/height)/.785 =Ö 0..720/.785= 0.957metres = say 1000mm
If  you increase the bed depth of resin to 1500mm (1.5 M) you will  get  the vessel Dia for Cation as 600mm and for softener the diameter will be 800 mm.
In both cases the linear and space velocity is within the range . This calculation has been shown in more detail in  Vessel & tank designing.

Chemicals Required For Regenerating Resin
Acid & Salts are required for regeneration of Resin . How much Acid & salt is
required is
Calculated as shown
100% Chemical required in Kgs   = ( Quantity of resin in liters * Regeneration
level in grams /liter)/ 1000

Dealkalization by Weak Acid Cation

Let us consider a raw water with the following analysis .

Cation as CaCO3                                    Anion as CaCO3

Ca    --       282                                    HCO3  -- -   265

Mg  --            8                                       Cl       ----    30

Na    --       22                                       SO4    -----   17

Total Cation            312                        Total Anion              312
We all know that  Weak acid cation resin removes hardness associated with
alkalinity but is not  efficient  to remove permanent hardness. Therefore this
system has a softener  to remove permanent hardness . The system consists of
Weak acid cation  unit
Degasser unit
Softener unit
Designing the unit
Permanent hardness =  total hardness  -  total alkalinity
=           290   -      265  =          25 ppm
Total quantity of water required = 200 M3/ day
Service cycle --   20 Hrs.

Flow from  WAC unit  =  200/20 = 10 M3/Hr

                                                       (  Ionic load)*( M3/Hr)*Service cycle
Quantity  Of  WAC Resin   =   ( ------------------------------------------------------
                                                            ( Exchange Capacity)    * 0.9
Where 0.9 is a deaeration factor .
Capacity of weak acid cation from graph (table ) is 100 gm/litre for exhaust
cycle of 20 hours
                                                            (  265)*( 10)*(20)
Quantity  Of  WAC Resin   =     -----------------------------------
                                                                        100* 0.9
=    588.8 litres (say 590 litres)

 Total hardness after WAC  Unit      =    Permanent hardness + leakage)

                                                       Permanent hardness + leakage
Softener resin required      =       ----------- --- ----------------------------
                                                               Exchange capacity * 0.9
=                    30* 10*20/62*0.9
=                  107 litres
The diameters  of units  are calculated as shown for split stream system

Dealkalization by chloride anion exchange
Strong base anion   absorb acids(cation Effluent )  as mn demineralization and is used in the second stage of Demineralization. Strong base anion can also split salts and this property of resin makes suitable for dealkalization.In commercial establishment like hotels , hospitals & other similar building  & small factories softener were employed for providing feed water  to prevent scaling. Softener did not remove alkalinity and hence sodium bicarbonate got converted to caustic soda and carbon dioxide and when the steam condensed ,COgot dissolved in the condensate ,lowering the pH and creating return line corrosion.  Later cation resin in H + form was used but these created problem of acid handling .  This problem of acid handling was solved by utilizing SBA resin for Dealkalization.
A type 2 resin is generally used for Dealkalization.  The anion resin can be regenerated in two ways
By using only common salt
By using salt and caustic
Normally the first method of regeneration is used for Potable water and second method when Water has to be used for boiler.
Let us design a system with the following example . Consider the water analysis
shown below.

Cation as CaCO3                                                    Anion as CaCO3
Ca ….              200                                                        HCO3…….          200
Mg …               100                                                       Cl …….               150
Na….                100                                                       SO4 ……               50
                       -------------                                                                       ------------
Total Cation         400                                                 Total Anion              400
                          
Total Anion                                           400

Alkalinity                                              200

% Alkalinity/ Total anion                     (200/400)*100=50%

Design parameters
SBA
SOFTENER
Hourly Flow rate M3/Hr
5
5
Service cycle in hours
10
10
Exchange Capacity   gm CaCO3/L(Regeneration only with NaCl)
15
56
Exchange Capacity  gmCaCO3/L(Regeneration only with NaCl+NaOH)
20
56
Regenerant  level  NaCl     gm/L(case1)
56
160
Regenerant  level  NaCl      gm/L(case 2)
48
160
Regenerant  level  NaOH     gm/L(case 2)
48

CASE 1Salt regeneration
The water has to be softened before dealkalization .
The percentage alkalinity before dealkalization  (200/400)*100=  50%
From the capacity table given below using 50 % alkalinity and 400 TDS the capacity for SBA Resin is 15 gmCaCO3/L  and For softener is 56 gm CaCO3/L . Correction factor has been taken for both .
                                                  Load (alkalinity ) *  Flow* Service cycle
Anion Resin Quantity    = ……………………………………………………..
                                                               Exchange capacity
=               ( 200) *  (5)*   10/ 15 = 667 litres
                                                      Load (Hardness  ) *  Flow* Service cycle
Softener Resin Quantity    = ……………………………………………………..
                                                                   Exchange capacity 
=               ( 300) *  (5)*   10/ 56 = 268 litres
Once we Know the volume of resin required it is very easy to calculate the vessel
diameter.
 CASE  2  Regeneration with  NaCl + NaOH
The  method of calculation will remain same as in case 1 but with different exchange capacity
                                            Load (alkalinity ) *  Flow* Service cycle
Anion Resin Quantity    = ---------------------------------------------
                                                        Exchange capacity
=      ( 200) *  (5)*   10/20  = 500 Litres
                                             Load (Hardness  ) *  Flow* Service cycle
Softener Resin Quantity  = ---------------------------------------------------------
                                                                Exchange capacity
=               ( 300) *  (5)*   10/ 56 = 268 litres
In conservative designing the amount of resin obtained is divided by 0.9 which is known as deaerating factor
Leakage will be 10 % of  the influent alkalinity  20 ppm CO3  or HCO3  as CaCO3
The  calculation for determining alkalinity  when caustic soda is used for regeneration
Total carbonate alkalinity =  carbonate alkalinity + bicarbonate alkalinity
Carbonate alkalinity          =       2* p alkalinity
Bicarbonate Alkalinity      =        M. Alkalinity -  2p Alkalinity


Designing  a two bed  Demineralizing system


A water having the following chemical analysis is treated  to produce demineralized water.
Cations as CaCO3
Anions as CaCO3
Ca
 85
HCO3
190
Mg
 25
CO3
0
Na
140
OH
0
K
 30
Cl
60
Fe
SO4
30
NO3
5
Total cation
280
Total anion
280
Total Hardness as CaCO3( Ca+Mg)
110
SiO2
10
%N a/TC
0.5
     CO2
5
T.AlkalinityasCaCO3(HCO3+CO3+OH)
190.0
EMA as CaCO(Cl+SO4+NO3)
95.0
%alkalinity/TC
67.857
%weak acids/T.A
5.357
%Cl
21.428
%SiO2/TA
1.785
DESIGN PARAMETERS
     A
        B
Hourly flow rate M3/Hr
1
15.8
Service cycle  Hrs.
12
24
Hourly flow rate gallon/min
4.4
69.44
Treated water Quality
Complete removal of silica and CO2 not required
Conductivity          <    50  micro mhos
pH   will not remain constant  and will vary during the service cycle  between 6-10

Designing the system

 Parameters
     SAC
 SBA
Type of resin
H+ resin
Type 2 Resin
Capacity of resin gmCaCO3/L
60
48.0
Regeneration Level Gm/L
100
96
Sodium leakage % of Total Cation
6
Total rinse    M3/M3of Resin
4.69
2.95
Displacement rinse  BV
1.50
2.00
Final rinse   M3/Mof resin
16.02
8.01
Backwash rate   M3/Hr/M2
9.76
4.88
Regeneration rate
4.88
4.01
Bed depth  M
1.0
1.0

Step By Step Calculation

In Ion exchange system designing starts from designing the last unit first. Therefore we will design the Anion unit first.

Step 1.  Calculating regeneration dilution requirement

4%   NaOH  contains  41.76  gms  NaOH / litre
50%   NaOH  contains 763.68 gms  NaOH / litre
4%   NaOH  applied    =  96 / 41.76  =  2.30  BV( or M3/Hr/Mof Resin) -- -(eq 1) 50% NaOH  applied     =  96 / 763.8 =  0.125 BV ( or M3/Hr/Mof Resin) ---(eq 2)
Product dilution water   =   eq1- eq2 = 2.30- 0.125 = 2.17 B

Step 2   Calculate Rinse requirement

Displacement Rinse  =      2.0 BV
Fast rinse                  =      Total rinse  -  Displacement Rinse
=   2.95 – 2.0 = 0.95

Step 3  Calculating Resin Quantity

Actual Resin Capacity  =  48 gm CaCO3/L
Water used for regeneration = 2.95 +2.30 =  5.25 BV
= capacity of anion exchanger actually lost
See water analysis  T.Alk. +  Cl + SO4  = 190+   60 +30 =280  gm as CaCO3
Capacity lost due to regeneration  =  5.25*280/1000 = 1 .47
Therefore effective resin capacity  =  48.09 - 1.47= 46.62
Volume of Resin =  (Ionic load  * M3/Hr *  Service cycle) / Exchange Capacity
=   (total Anion ) * 1* 12  /  47.62
=   (280)* 1* 12 / 46.62
=    280 *1*12  / 46.62
=    72  litres

Step 4     Check  if single regeneration per day is possible or not

Flow rate             =   1 M3/Hr
Resin Volume     =   .072 M3
Service rate        =     1 /  .072 = 13.68 M3/Hr/ Mof resin
Which is within the limit and hence 1 regeneration per day is
possible.

Step 5    Calculating   vessel diameter

Bed Depth      =  1 M
Bed cross sectional area  =  volume of resin / bed depth
= 0.72 / 1 = 0.72 M2
Area  = 0.785 DBecause (p/ 4=3.14/4=0.785)
Therefore  D         =    sq.rt  ( area /0.785)
=    0.302 M
=    302  mm (say 300mm)

Step 6  Calculating Water Requirements

Backwash Flow (M3/Hr)  =  Velocity * Area  = 4.88* 0.072    =  0. 0.35136 M3/Hr
Backwash volume (M3)    =  Flow *  Time    =  0. 0.35136* (15/60) = 0. 0.08784 M3
Because backwash time is 15 minutes
Regeneration
Dilution water  =  Product Dilution water * Resin Volume
=   2.17* .072 =0.157
                                                 4% regenerant applied
4% NaOH applied   =    (     --------------------------------------    ) *60
                                                      Regenerant flow rate
=      ( 2.30/4.01)*60 =  34.397 minutes.
Displacement rinse volume =    Displacement rinse *  Resin volume
=    2.0* .072   = .144 M3
Displacement rinse  time   =    bed volume/ regenerant flow rate
=  (2/4.01)*60  = 30 minutes
Time For Displacement & Regeneration = 34.39 + 30 = 65 minutes
Fast Rinse Volume  =  Fast rinse BV * Resin Volume  = 0.95* .072 =.068Mm
Fast   Rinse  time     =  Fast rinse BV/  Fast Rinse Rate
=  (.95/ 8.02)*60 = 7 minutes
              
            Operation                   time                           water used                      Volume
                                                  Min                             type                                 M3
            Backwash                      15                             Cation                           0.176
            Regeneration                 34                             Cation                           0.157
            Displacement                 30                             Cation                           0.108
             Fast Rinse                     07                             Cation                           0. 100
          
            Operation                   time                           water used                      Volume
                                                  Min                             type                                 M3
            Backwash                      15                               Raw                                0.146
            Regeneration                30                                Raw                               0.157
            Displacement                18                                Raw                              0.090
             Fast Rinse                     11                               Raw                              0.068
          

If you see in excel we have worked out for the same water analysis a combination of SAC/WBA /DG (Check Alkalinity load has not been considered) . The reason is here we are considering a flow rate of 1 M3/Hr.

Calculation  For Cation

Step 1.  Calculating regeneration dilution requirement

4%   HCl   contains     40.72  gms  HCl/litre
30%  HCl   contains   479.2    gms  HCl/litre
4%   HCl  applied     =  100 / 40.72  =2.45    BV( or M3/Hr/Mof Resin) ----  (eq 1)
30%  HCl  applied    =  100 / 479.2 =  0.208 BV ( or M3/Hr/Mof Resin) ---- (eq 2)
Product dilution water   =   eq1- eq2 = 2.45- 0.208 = 2.24 BV

Step 2   Calculate Rinse requirement

Displacement Rinse  =      1.5 BV
Fast rinse                   =      Total rinse  -  Displacement Rinse
=      4.69 – 1.5 = 3.19

Step 3  calculating Resin Quantity

Actual Resin Capacity            =  60gm CaCO3
Water used for regeneration  = 4.69 +2.45 =  7.14 BV
= capacity of cation  exchanger actually lost
See water analysis  Ca+Mg+Na+K  = 85+25+140+30 =280  gm as CaCO3
Capacity lost due to regeneration  =  7.14*280/1000 = 1.99
Therefore effective resin capacity  =  60 - 1.99= 58.0
Volume of Resin =  (Ionic load  * M3/Hr *  Service cycle) / Exchange Capacity
=    ( (total Cation)+1*12+ / 58)+(total cation)*(.5)/58
=      (280)* 1* 12 / 58 + (280)*0.5/58
=      58 + 2.4  =60.4  (say 60 litres)

Step 4     Check  if single regeneration per day is possible or not

Flow rate             =   1 M3/Hr
Resin Volume     =   .060 M3
Service rate        =     1 /  .060 = 16.66. M3/Hr/ Mof resin
Which is within the limit and hence 1 regeneration per day is possible.

Step 5    Calculating   vessel diameter

Bed Depth      =  1 M
Bed cross sectional area  =  volume of resin / bed depth
= 0.060 / 1 = 0.060 M2
Area  = 0.785 D2   Because  (p/ 4=3.14/4=0.785)
Therefore  D         =    sq.rt  ( area /0.785)
=    0.276 M
=    276  mm (say 300mm)

Step 6  Calculating Water Requirements

Backwash Flow (M3/Hr)  = Velocity * Area  =  9.76* 0.060    =  0. 0.5856 M3/Hr
Backwash volume (M3)    =       Flow *  Time     =  0. 0.5856* (15/60) = 0.1464M3
Because backwash time is 15 minutes

Regeneration
Dilution water   =  Product Dilution water * Resin Volume
=   2.17* .072 =0.157
                                               4% regenerant applied
4% HCl applied  =    (     --------------------------------------    ) *60
                                                Regenerant flow rate
=      ( 2.45/4.88)*60 =  30.12 minutes.
Displacement rinse volume =    Displacement rinse *  Resin volume
=    1.5* .060= . 0.09M3
Displacement rinse  time      =    bed volume/ regenerant flow rate
=  (1.5/4.88)*60  = 18.44 minutes
Time For Displacement & Regeneration = 30 + 19 = 49 minutes
Fast Rinse Volume  =    Fast rinse BV * Resin Volume  = 3.19* .060 =.068Mm
Fast   Rinse  time     =    Fast rinse BV/  Fast Rinse Rate
=      ( 3.19/ 16.01)*60 = 11 minutes

   
Designing a demineralizing system with SBA & WBA

Get a raw water  analysis

Turbidity          10
Color                2
Free Cl2              2
Organics             2
pH                      7.2

Cation as CaCO3                                     Anion as CaCO3

Ca          150                                             HCO3         225
Mg           75                                                Cl            175
Na          230                                                SO4           65
Fe               0                                                NO3            0
SiO2         10
---------------------------                          ---------------------------------
Total Cation        465                                  Total Anion             465

Design treated water analysis
Conductivity   <       5  m mhos
pH                            7 +- 0.2
SiO2                <        0.03ppm

Ion Exchange scheme                  MB,   SBA,  WBA,   DG,   SAC
Pretreatment                                     DMF ,   ACF
Regeneration                                                     CO FLOW

Design parameters 

Minimum service cycle is 8 hours
Minimum Bed depth  is 1 meter
Maximum bed depth is dictated by pressure drop  but we have limited it up to 1.5 M
Linear Velocity is  between  15  to   45 M2/Hr/M.
Volumetric velocity (space velocity) is between  8  to  40  M3/Hr/M.
Sufficient backwash velocity to have 50% bed expansion.(see Resin Chart ).
Chemical injection --    4—6 %  HCl      and 4—7 %  NaOH .
Chemical injection rate   2 to  5 M3/HR/M3  For Anion  &  4 to  10 M3/Hr/M3
Chemical displacement rate is same as    chemical injection rate.
Displacement volume 1.5 to 2 bed volume Fast rinse (final rinse )  Flow rate is the greatest of the three value Service flow    or 12 M3/Hr/M3 of resin  or 15 m3/Hr/M2
Fast rinse volume 5 to 10  bed volume.

Other parameters required for designing  Volumetric flow rate  M3/Hr Regenerant level gm /l or Kg/M3

Operating capacity


Parameters
    WAC
    SAC
    WBA
    SBA  
   (type1)
    SBA  
   (type2)
MB
Regeneration level for Cation

     110

      80

   80
Regeneration level for Anion

      55

      80

     80

   80
Exchange Capacity for Cation

    110

    60


      25

    32

   40
Exchange Capacity for Anion

       

     50

      25

    32

   20

The  above capacities and regeneration level is based on the following ratio
Alkalinity/ TC, Na/TC , SO4/EMA , SiO2/TA , TH/Alkalinity

Pretreatment  
See pressure filters  and activated carbon filters.
Ion exchange system
It is always better to start from the last unit first but in this case we are starting  from  SBA  i.e. Strong base Anion . We are designing the mixed bed separately because nowadays it is quite common to give mixed bed as a standalone unit.
Calculation Methodology
Calculate the resin requirement  by the following formula

                                                              Flow  X  Service cycle X  ionic load
Anion Resin quantity in litres    = ----------------------------------------------------
                                                                        Capacity
                                                                 25  X   24  X  38.5
In this example                            =  -------------------------------                  
                                                                           24
=     962.5 litres
Area   =  .785 D2  Where D is the diameter
Linear Velocity  =   Flow / Area
Area  =      Resin Volume in sq. meters / Bed depth
Bed depth = 1 to 1.5
Area = 962.5*.001/ 1            ( 1 Meter is the bed depth)
Area = .962 M2
Linear Velocity  =   25  /.96     =    26.6 M/Hr  ( within the limits )
Area     =       pD/ 4  or    p/4 *  D2
=       .785 D2
D2              =       Area/.785
D  =    SqRt  (Area/.785 )
D =    1.10 M  or  1100  mm


 Calculation  for WBA resin

                                    25    X     24   X    (Total Anion – T alkalinity)
Resin Quantity   =-------------------------------------------------------                    
                                                Ex capacity
                            =     25    X     24   X    (465-–225)
                                                            57.6
    =     600    X     240  /  57.6
    =       2500 litres

Keeping a fixed bed depth of 1 M  we get an area of  =       2.5 M2
Linear velocity =  25/2.5= 10 M2/Hr/M2
This is slightly on the lower side , hence we will increase bed depth and reduce cross sectional Area.
We    will use  a  bed depth of  1.2
Area  = 2.5/1.2  = 2.0
Linear velocity =  25/2 =12.5
Let us keep a bed depth of 1.5 M
Then Area =  2.5/1.5 =1.7
Linear Velocity = 25/1.7 =14.7
Slightly less but ok
D2 =  sort( 1.7/.785)
D = 1.5 M =1500 mm

Thus it can be seen that  both velocities are function of flow , service cycle and bed depth. Flow is dependentent on requirement and bed depth is restricted due to pressure drop, hence it is by reducing or increasing the service cycle that one can get the optimum linear and space velocities.  In the above example if we have to  increase linear velocity to double it’s value, then we to reduce service cycle duration by half. The advantage is less resin, smaller vessel size but number of regeneration per day will increase
Any way without  changing any values in the above calculated values for SBA & WBA , we similarly calculate Resin quantity for SAC resin
                                                            Flow  X  Service cycle X  ionic load
Cation Resin quantity in liters    = -------------------------------------------------------------
                                                                        Capacity
=             25  X  24 X  455/60
=             4550 litres
=              4.5 M3
Space velocity = flow/ volume = 25/ 4.5 =5.55
Linear velocity will be slightly more depending on the bed depth . If bed depth is 1M , the linear velocity will  be same as space velocity. That  means  service cycle should be Half or 16 hours .  But we are keeping the service cycle same as for other two units i.e. is 24 hours and bed depth as 1.2 meter.
Then area = volume of resin / bed depth    =  4.5/1.2  =    3.75M2
Therefore diameter = sqrt ( 3.75/.785)      =   2.185   =     2.2 M (say)
Here the  resin quantity we have calculated is for net output and not for gross output . The addition resin required for meeting the anion regeneration water can be calculated separately .  The other way is to calculate the entire  regeneration requirement of anion  and then cation treated water quantity required for the same is added to the net output.
Gross output = Net output require + water for regeneration of succeeding ion exchangers.
After we have done our preliminary  design , now we will work out the details .
We start with backwash flow for down flow units . For up flow packed bed units there is no backwash stage.
Backwash flow =  Area X  backwash velocity
Strong  Anion backwash  = .948M     X    6 M/Hr   =   5.70 M3/Hr
Similarly for   Weak Anion   backwash   = 1.766 M2  X    6 M/Hr   =  10.6 M3/Hr
Vessel volume  =   Area *   shell height
=   .948 *   (2)       =     1.896     M3   for   SBA   and
=  1.766  * (2.2)    =      3.8852  M3   for   WBA
Backwash time   =   Vessel volume/ Backwash flow
=         1.896/5.70  =  0.33 hours = .33*60  =   19.8 Minutes  For SBA
=         3.885/ 10.6  = 0.36 hours =21 Minutes
Regenerant  Chemical   Amount    =     Resin (litres)  X    Regenerant Dose gm/litre
The minimum dilute flow rate of regeneration flow is 2..00 BV/Hr  for NaOH  and 3-4 BV/Hr for Cation.  Regeneration strength for both is  4-5 %   . Optimal contact time is 60 Minutes .
Dilute Caustic Rate  =  2 BV/Hr  for anion
The  regeneration of WBA & SBA  Is thoroughfare   and  the alkali used for SBA should be  added to that  calculated  for WBA
Regenerant Chemical in Kgs for WBA  =   57.6 *2546 =  146600gms = 146.6 kgs
Regenerant Chemical in Kgs for SBA   =   80*  960= 76800gms = 76.8 kgs
Total Dilute chemical        =      146.6  +76.8 =223.4 kgs
=     223400  gms / 41.6gms/litre =5370 litres  =5.37 M3
=   (5.37/5)*60= 64 minutes
Displacement Rinse   1 to 2 Bed volume is used
Displacement time  =   1  X  Resin volume in M3 / Dilution rate                                                
=         ( 3.5/5)*60 =  42   minutes
Note ;-  We have been conservative in this calculation  . We have done the same calculation in excel where you can change user values to slightly higher  values.
Final Rinse  or fast rinse is calculated   the greatest of the following figures .
Service flow
12 BV/  Hr
15 M3/Hr/M2
In our design we have used the  15 M3/Hr/M2   throughout  .
Weak Base  Anion fast rinse  =    15 *1.766 = 26 M3/Hr
Strong base Anion Rinse  =         15* .948  = 14.2 M3/Hr
Volume of rinse water required = 9 to 10 BV
WBA Rinse Time   =     ( 10* 2.56 / 26)*60  =   (25.6/26.4 )*60  =  58 Min
SBA  Rinse time     =      ( 10*.96 /14.2 )*60 =   (9.6/14.2)*60    =   40 Min
Once you  have calculated the time you have to calculate the waste water . Water used for anion is all   cation water and hence the additional resin required for this is calculated.
Regeneration flow and time is calculated similarly for Cation unit . We leave this has an exercise for You. We have done the complete calculation in Excel  You can check your answer there .


Designing a Mixed Bed Unit



Mixed bed unit is a unit in which cation and anion resin are  in one unit. Mixed bed is generally employed as a polishing unit. In earlier days it was generally employed with other ion exchange units  but today it is used alone for RO treated water.  Mixed bed  unit  is  always a down flow unit and free  board is   always taken as  100% .The cation and anion  load depends on the treated water used . If RO treated water is used as feed Water for MB then  the ionic load should  be taken as 50 . For Ion Exchange treated water the load  can be less than  35ppm.
Here we are taking 35 ppm ionic load both for Cation & Anion.
Volumetric flow considered is  25M3/Hr   &   Service time  is   24  hours.
Minimum Bed depth considered is 1 Meter &  Maximum 1.5 Meter
Linear Velocity range  is  15 –45M3/Hr/M2
Space Velocity  range   is   10—40 M3/Hr/M3

Step1    Finding Resin Quantity
Resin Quantity  in Litres   =  (  Ionic  Load  * Flow * Time) /  Exchange capacity
Cation Resin  =     (35*25*24) / (44  *.9)
=        530 litres  = 530/1000=  .530 M .
Anion Resin   =    (35*25*24) / (24  *.9)
=         972 litres  = 972/1000=  .972 M 3

Step 2 :-    Finding Vessel Diameter by either by bed depth or by linear velocity .

Area      =        Resin volume / Bed Depth       =      (.53+.972)/1.2
              =         1..25 M2
Area      =         Flow/ Velocity  =  25/25
              =          1 M2
Diameter  =   sqrt (area/.785)
For case 1      Diameter   =   1.26 =  1400mm                        A
For case  2     Diameter   =  1.12  =  1100mm                         B
Which one to select ?                     A       Or         B
Either of them is correct but we have to select the  most appropriate one required for our need.
What will be the shell height
For case 1)           Shell height   =   Bed height + 100% free board
=   1.2  +   100% * (1.2) =   2.4
For case 2)          Bed depth      =       volume / area
=      1.5/1  =1.5
Now shell height     =     Bed height + 100% free board
=     1.5 +   100% * (1.5)  =    3.0
Though  diameter is slightly larger in case1 it will preferable because shell height is  less  & Linear & space velocity is within the limit.
Acid required   =     Regenerant  level  * Resin quantity
=    80* .53 0 =    42 .4 Kgs
Caustic required   =     Regenerant  level  * Resin quantity
=    80* .972 =  77.76  Kgs

Step 3 :-  Calculating Regeneration Schedule 
Back washing  Flow    =  8 M/hr *  1.25      =   10 M3/Hr
Back washing  time     =   15 Minutes
Back washing Volume  =        10 *(15/60)   =   2.5 M3
4%  HCl contains   40.7 gm/l   HCl   &
4%  NaOH contains 41.6 gm/l NaOH
4% Acid:                42400/40.6 =1044/1000=  1.044 M3
4%Caustic             77760/41.6 = 1869/1000 = 1.869 M3
                          
Assuming 30 minute contact time
Dilution (injection rate ) for NaOH =  1.869/30 = 1869 / 30 = 62.3 litres/min
Dilution rate       For Acid                =  1.044/30 = 1044/30 =  34.8  litres/ min
Acid  & Caustic displacement rate
Voids  =  40%*.972* 1 =     0.388  M3  (Chemical is displaced for 1  bed Volume)
150 mm space above the bed  =  .15 *1.25 =         0.187  M3
Total     =       0.388 +0.187 =    0.575M3 .
Keeping the same dilution rate as that for caustic
Displacement Rinse for Caustic   =   613/62.5 =  9 Min
Similarly for Acid        =     40% *.530 *1   =              .212 M 3
150 mm space above the bed  =  .15 *1.5     =             .187  M 3.
Total     =0.212+0.187      =     0 .399 M 3.              
Keeping the same rate as that for acid injection
Displacement Rinse for Acid   =   399/34.8 = 12.0   Min
Note :  Here  we have assumed the contact time should be minimum 30 minutes .

Step 5:-     Drain Down      
Draining is done to the top of bed and takes about 15 minutes .                 

Step 6 :-   Air Mix
Air mix is done  by using   180M3/Hr   per M 2    with enough pressure to overcome the height of water and  that of resin.

Step 7  :-  Refill
The vessel is filled with water

Step 8  :- Final Rinse
Calculating the total volume of water required per rinsing   4 Bed Volume
Flow rate required is 15M3/Hr/M2  of area.
15M3/Hr/M2   * 1.25 M =        18.75  M3 / Hr
Volume of water required is  = 4 * 1.5  = 6 M3 .
Time for rinsing       =           6 / 18.75 =  .32 hours = .32*60 = 19.2 Minutes..
Note ;- For acid & caustic injection we  started our calculation  with minimum contact time of 30 Minutes .  We  could have found out the time for injection  by assuming injection rate
For caustic at 3.5 BV/Hr and 4 BV/Hr For acid .
Dilute caustic rate = 3.5*.972  =3.402 M3/Hr
Time for injecting 4 % Caustic   =  (1.869 / 3.40) *60= 32.9 Min  ( Ignoring other factor)
Similarly for acid injection
Dilute acid rate  =     4*.530 =2.12 M3/Hr
Time for injecting 4% Acid = (1.044/2.12 )*60 = 28.30 minutes


 [d1]   The residence time (contact time) in packed bed reactors is often characterized  by empty bed contact time (EBCT) which is simply the depth of media divided by superficial velocity or the total bed volume divided by the volumetric flow rate (v/Q)


* Disclaimer: All the above gathered from various Technical handbooks & hand open sources . no patent or propriety claim would be entertained. 

BASIC PRINCIPLES OF WATER TREATMENT

WATER & ITS IMPURITIES : Water is never found in a pure state in nature because it is an extemely good solvent.  As it fall...